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1. INTRODUCTION

The time-optimization problem is well-known as an optimal control problem, in which the objec-
tive function is the time spent by the system to reach some given terminal state [1–3]. For systems
with continuous time, this problem naturally fits into the general problem of classical optimal con-
trol theory. In the case of linear continuous-time systems, the application of Pontryagin maximum
principle [1] guarantees that any solution to the problem has the form of a relay control function.

Systems with discrete time have a number of fundamental differences in such a case [4–6].
While most of the problems in the discrete-time optimal control theory can be solved by the discrete
maximum principle [6, 7] and/or the dynamic programming method [8], these approaches are totally
unapplicable to solving the time-optimization problem even for a linear system. The main reasons
here are the irregularity of the extremum for almost all initial states, the non-uniqueness of the
optimal trajectory, and the discrete nature of the objective function [9, 10]. The use of many
modern results in the theory [11, 12] in relation to this problem also turns out to be incorrect, and
the known papers discussing the time-optimization problem for discrete-time systems cover only a
number of special cases [13, 14]. From a practical point of view, it is important to obtain results
that can be used in the case of a linear system of arbitrary dimension with a convex set of geometric
constraints on control. When considering such systems, the results of the above-mentioned papers
are either difficult to implement in computational terms or are only applicable under significant
additional assumptions.

In this paper, we develop an efficient numerical algorithm for constructing a time-optimal control
for linear discrete-time systems. One of the most well-known and justified numerical schemes
for solving various linear optimal control problems is Krotov method [15, 16]. It is based on
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1054 IBRAGIMOV, TSARKOV

the sufficient conditions for global optimality [17] and the principle of extending optimization
problems [18] developed by V.F. Krotov, V.I. Gurman and M.M. Khrustalev. A number of papers
are also devoted to the implementation of this method in the case of discrete and discrete-continuous
in time control systems, see [19, 20]. The Krotov method is an iterative procedure of constructing
sequential improvements of some pre-selected control of a given dynamical system. The most
important feature of the method is its non-locality. This means that after each iteration, new
controls could not be close to those found in the previous steps in the sense of any distance in the
space of admissible controls or in the sense of the values of an objective function. In the case of
linear systems, this feature appears most clearly, since it is often possible to determine the optimal
control already in the first iteration of Krotov method from any initial approximation [19, 21].

In this paper, Krotov method is applied to find an optimal-time control for known estimates of
the optimal time value. Several alternative approaches are proposed for constructing the estimates.
In general, the results of [9, 10, 22] can be used for these purposes, although in many situations
their computational complexity is significant. Therefore, in Section 3 we propose a new approach to
constructing optimal time estimates for the case when the matrix of the considered linear system is
diagonalizable. After estimates have been constructed, it is possible to proceed to a problem with
a fixed time. This reduction is described in detail in Section 4. Then Krotov method is applied
to the resulting problem (Section 5). In Section 6 a general numerical algorithm for studying the
time-optimization problem is formulated. Section 7 contains a number of examples illustrating the
efficiency and application features of the algorithm in solving specific problems.

In comparison with the previous works of one of the authors [9, 10, 22], it is not assumed to
obtain analytical conditions for optimality of a control process in the time-optimization problem.
Instead, we present a numerical procedure that allows, in some cases, to approximately find time-
optimal processes. In comparison with [22], where two-sided estimates of the optimal time were
constructed with geometric methods, the estimates in this article are constructed analytically, but
for a smaller class of systems. The idea of using Krotov’s global improvement method in studying
the time-optimization problem in discrete time is completely new. Before this, Krotov method
was used by one of the authors in studying some problems of optimal control for continuous-time
systems [23].

In this paper, we restrict ourselves to considering stationary linear discrete-time systems with
a non-singular matrix and a convex compact set of geometric constraints on control. The non-
singularity condition is used to prove the convergence of the proposed iterative procedure. The
stationarity condition is unimportant and is assumed for simplicity.

2. PROBLEM STATEMENT AND GENERAL IDEA OF THE SOLUTION

Consider a linear stationary system with discrete time

x(k + 1) = Ax(k) + u(k), k ∈ N ∪ {0} = {0, 1, 2, . . .}, (1)

where x(k) ∈ R
n is the state of the system, u(k) ∈ U is the control, U is a convex compact set in R

n

such that 0 ∈ intU , A ∈ R
n×n is a given non-singular matrix (detA 6= 0). The initial condition for

the system (1) is fixed:

x(0) = x0 ∈ R
n. (2)

It is required to calculate the minimum number of steps Nmin, in which it is possible to transfer
the system (1) from a given initial state x0 to the origin and to construct an optimal process
{x∗(k), u∗(k − 1)}Nmin

k=1 , satisfying the condition x∗(Nmin) = 0. The number Nmin will be further
called the optimal time of the system (1) with the initial condition (2) and we will assume that the
considered problem is solvable, i.e. Nmin <∞.
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ON AN APPROACH TO SOLVING THE TIME-OPTIMIZATION PROBLEM 1055

The problem will be investigated in two separate stages. Let us first give a description of them.

At the first stage, we estimate the optimal time Nmin. In some situations, Nmin can be calculated
exactly, but in the general case, we assume to find a two-sided estimate

Nmin 6 Nmin 6 Nmin, (3)

where the equality Nmin = Nmin is not excluded. For this purpose, theoretical results from [9, 10]
and algorithmic approaches from [22] can be used. In the next section, we propose a new approach
to constructing the dual estimates in the case where the matrix A of the system (1) has n linearly
independent eigenvectors.

At the second stage, we solve optimal control problems for fixed operation times N for the
system (1)–(2) with respect to the functional ‖x(N)‖2, the squared Euclidean norm of the vec-
tor x(N), where N takes the values Nmin, . . . , Nmin. The smallest N for which the minimum value
‖x∗(N)‖2 is zero gives the optimal time Nmin = N , and the corresponding {x∗(k), u∗(k − 1)}Nk=1

is the optimal process. The method for finding the optimal processes is formulated and justified
in Sections 4 and 5. Section 6 is devoted to the joint algorithmic implementation of the described
stages.

3. OPTIMAL TIME ESTIMATE

As demonstrated in [9, 10, 22], the calculation of Nmin can be reduced to constructing a class of
null-controllable sets {Ξ(N)}∞N=0. Here Ξ(N) ⊂ R

n is the set of those initial states from which the
system (1) can be transferred to the origin in N steps, i.e.

Ξ(N) :=

{

{ξ ∈ R
n | ∃u(0), . . . , u(N − 1) ∈ U : x(N) = 0}, N ∈ N,

{0}, N = 0,
(4)

where x(N) denotes the solution of the system (1) at x(0) = ξ.

Since the time-optimization problem for a given initial state (2) is assumed to be solvable, then
the following inclusion holds:

x0 ∈
∞
⋃

N=0

Ξ(N).

Therefore, taking into account (4), we have

Nmin = min{N ∈ N ∪ {0} : x0 ∈ Ξ(N)}. (5)

The procedure of constructing {Ξ(N)}∞N=0 is very complex, which is due to the following represen-
tation of 0-controllability sets.

Lemma 1 [9, Lemma 1]. Let the sequence {Ξ(N)}∞N=0 be defined according to (4) and detA 6= 0.
Then for all N ∈ N the relation

Ξ(N) = −
N
∑

k=1

(

A−kU
)

holds, where the sum symbol denotes the Minkowski sum of sets.

Minkowski sum of convex sets is generally computationally intractable. For example, let U be a
polytope in R

n. Then every set Ξ(N) is also a polytope [24, Corollary 19.3.2] and the descriptive
complexity of the polytopes Ξ(N) (i.e., the number of their vertices) grows exponentially in N
[25, Theorem 4.1.2].

However, under some additional assumptions on the matrix A and the set U , it is possible to
compute a two-sided a priori estimate of Nmin without having to construct the sequence {Ξ(N)}∞N=0

explicitly. One such case is considered below.
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1056 IBRAGIMOV, TSARKOV

Let us introduce some auxiliary notations. Let umax > 0 and λ 6= 0 be some real numbers.
Consider the mapping F (·;umax, λ) : R → [0;+∞), defined in the form

F (α;umax, λ) =























|α|
umax

, |λ| = 1,

−
ln
(

1− |α|
umax

(|λ| − 1)
)

ln |λ| , |λ| 6= 1.

(6)

For an arbitrary ϕ ∈ R, we denote by Aϕ ∈ R
2×2 the rotation matrix

Aϕ =

(

cosϕ sinϕ
− sinϕ cosϕ

)

,

and we denote by BR the closed ball of radius R centered at origin in R
2. We also introduce a

notation for the m-ary Cartesian product of arbitrary sets V1, . . . , Vm:

m
⊗

i=1

Vi := V1 × . . .× Vm.

Lemma 2. Let the condition Nmin <∞ be satisfied in the system (1), there exist numbers

λ1, . . . , λn1
6= 0, r1, . . . , rn2

> 0, ϕ1, . . . , ϕn2
∈ R such that

A =

























λ1 . . . 0
. . .

λn1

... r1Aϕ1

...
. . .

0 . . . rn2
Aϕn2

























,

and numbers u1,max, . . . , un1,max, R1,max, . . . , Rn2,max > 0 satisfying the condition

U =
n1
⊗

i=1

[−ui,max;ui,max]×
n2
⊗

j=1

BRj,max
,

where n1, n2 > 0 and n1 + 2n2 = n.

Then the inclusion x0 = (x0,1, . . . , x0,n)
T ∈ Ξ(N) holds if and only if the inequality

N > max

{

max
i=1,n1

F (x0,i;ui,max, λi); max
j=1,n2

F
(√

x20,n1+2j−1 + x20,n1+2j ;Rj,max, rj
)

}

is valid.

For the convenience of the reader, the proof of the statements in this and subsequent sections
is transferred to the Appendix.

Note that within Lemma 2 the values n2 = 0 or n1 = 0 are admissible. In this case, the matrix A
does not have the corresponding blocks, and all its eigenvalues are either real or essentially complex.

Corollary 1. Under the assumptions of Lemma 2, due to (5), the exact equality holds

Nmin =

⌈

max

{

max
i=1,n1

F (x0,i;ui,max, λi); max
j=1,n2

F
(√

x20,n1+2j−1 + x20,n1+2j ;Rj,max, rj
)

}⌉

,

where ⌈α⌉ means the minimum integer not less than α:

⌈α⌉ := min{k ∈ Z : α 6 k}, α ∈ R.
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The result of Corollary 1 is applicable only to a small class of systems (A,U) described by
the conditions of Lemma 2. But it can be used to obtain dual estimates of the optimal time
in the case of an arbitrary diagonalizable matrix A and a convex set U . For this purpose, we
should consider auxiliary systems of the form (1) satisfying the conditions of Lemma 2 and use the
following statement.

Lemma 3. Let the inclusion U ⊂ U ⊂ U hold, where U , U , U ⊂ R
n are convex and compact

sets containing 0, the time-optimization problem for x0 ∈ R
n is solvable for systems (A,U ), (A,U),

(A,U ), and Nmin, Nmin, Nmin are optimal time values in the time-optimization problem for these

systems, respectively. Then

Nmin 6 Nmin 6 Nmin.

It is known that any matrix A ∈ R
n×n with n linearly independent eigenvectors can be reduced

to the form presented in Lemma 2 by the spectral decomposition [26, Theorem 3.4.5]. The columns
of the matrix of this transformation S ∈ R

n×n are either eigenvectors for real eigenvalues or their
imaginary and real parts for complex eigenvalues. A similar linear transformation can be applied to
the entire system (A,U), passing to the equivalent system (S−1AS,S−1U) as demonstrated in [27].
The following result holds.

Lemma 4 [27, Lemma 2]. Let S ∈ R
n×n, detS 6= 0, (A,U) be a system of the form (1), and

{Ξ̃(N)}∞N=0 denote the class of null-controllable sets of the system (S−1AS,S−1U). Then

Ξ(N) = SΞ̃(N), N ∈ N ∪ {0}.

In the context of the considered problem, the set S−1U can be estimated from above and below
by the sets U,U ⊂ R

n satisfying the conditions of Lemma 2. In combination with Lemma 3, this
leads to the desired estimates of Nmin in the original time-optimization problem. More precisely,
the following statement holds.

Theorem 1. Let in the system (1) for a given initial state x0 ∈ R
n the condition Nmin <∞

hold, the matrix A ∈ R
n×n have n linearly independent eigenvectors, detA 6= 0, S ∈ R

n×n be the

transition matrix to the real Jordan basis of the matrix A:

S−1AS = Λ =

























λ1 . . . 0
. . .

λn1

... r1Aϕ1

...
. . .

0 . . . rn2
Aϕn2

























.

Then the following estimate of Nmin is valid:
⌈

max

{

max
i=1,n1

F (y0,i;u
′′
i,max, λi); max

j=1,n2

F
(√

y20,n1+2j−1 + y20,n1+2j ;R
′′
j,max, rj

)

}⌉

6 Nmin

6

⌈

max

{

max
i=1,n1

F (y0,i;u
′
i,max, λi); max

j=1,n2

F
(√

y20,n1+2j−1 + y20,n1+2j ;R
′
j,max, rj

)

}⌉

,

where y0 = S−1x0, and the numbers u′i,max, u
′′
i,max, R

′
j,max, R

′′
j,max > 0, i = 1, n1, j = 1, n2, are

determined by the condition

n1
⊗

i=1

[−u′i,max;u
′
i,max]×

n2
⊗

j=1

BR′

j,max
⊂ S−1U ⊂

n1
⊗

i=1

[−u′′i,max;u
′′
i,max]×

n2
⊗

j=1

BR′′

j,max
.
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Theorem 1 allows us to obtain a priori estimates of the value Nmin for the initial state x0 only in
the case when the system matrix A has n linearly independent eigenvectors. This fact is essential,
since results similar to Lemma 2 cannot be obtained if the real Jordan form of the matrix A contains
Jordan cells corresponding to multiple eigenvalues. This is due to the complexity of constructing
sets invariant with respect to this kind of linear transformation.

Remark 1. The statement of Theorem 1 involves the u′i,max, u
′′
i,max, R

′
j,max, R

′′
j,max values, which

determine the two-sided estimate of the optimal time Nmin. According to Lemma 3, the greatest
accuracy of the lower estimate will be achieved with the minimum admissible values of u′′i,max,
R′′

j,max, which can be calculated in the course of solving the following convex programming problems:

u′′i,max = max
u∈S−1U

|ui|, i = 1, n1, (7)

R′′
j,max = max

u∈S−1U

√

u2n1+2j−1 + u2n1+2j , j = 1, n2. (8)

Determining the best values of the parameters u′1,max, . . . , u
′
n1,max, R

′
1,max, . . . , R

′
n2,max for the upper

bound is a much more complex problem. This is due to the need to solve a minimax problem that
depends on the initial state x0. However, if a certain set of admissible values of these parameters
is known, for which the inclusion

U =
n1
⊗

i=1

[−u′i,max;u
′
i,max]×

n2
⊗

j=1

BR′

j,max
⊂ S−1U

holds, then all parameters except one can be fixed, and the last one can be selected as a result of
solving one of the following two optimization problems:

u′i0,max = max







u > 0:
i0−1
⊗

i=1

[−u′i,max;u
′
i,max]× [−u;u]×

n1
⊗

i=i0+1

[−u′i,max;u
′
i,max]

×
n2
⊗

j=1

BR′

j,max
⊂ S−1U







, i0 = 1, n1, (9)

R′
j0,max = max







R > 0:
n1
⊗

i=1

[−u′i,max;u
′
i,max]×

j0−1
⊗

j=1

BR′

j,max
× BR

×
n2
⊗

j=j0+1

BR′

j,max
⊂ S−1U







, j0 = 1, n2. (10)

4. FIXED-TIME PROBLEM

Let for some integer N the two-sided estimate Nmin 6 N 6 Nmin be satisfied, where the values
of Nmin 6 Nmin are obtained based on the results from [9, 10, 22] or the previous section. Note that
the method of constructing the estimates is not essential here, since only their numerical values
will be used in further discussions.

We introduce the notation U := {k 7→ u(k) : {0, 1, . . . , N − 1} → U}, X := {k 7→ x(k) :
{0, 1, . . . , N} → R

n | x(0) = x0} and consider the problem

J(x(N)) = ‖x(N)‖2 → min
u∈U

. (11)

If Nmin is the optimal time for (1)–(2), then the minimum in (11) for N > Nmin is achieved and is
equal to zero. If N = Nmin, then all solutions of (11) are solutions (optimal controls generat-
ing optimal processes) in the original time-optimization problem for system (1) with the initial
condition (2).
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It is known [9, 28, 29] that optimal controls in (11) in the case of N > Nmin are special in the
sense that the necessary optimality conditions in the form of discrete maximum principle turn
out to be meaningless. Various regularization methods proposed in [9, 10, 15, 18, 28, 29] allow to
solve this problem, but lead, as a rule, to significant computational difficulties. Therefore, we will
approach the solution of (11) from the position of constructing a globally minimizing sequence. We
will proceed as follows.

Let some (non-optimal) control û ∈ U be already given, this control corresponds to a trajectory
x̂ ∈ X , which is a solution to the system of recurrence relations (1) for u = û with the initial
condition (2), and the quality of this control û is numerically characterized by the value J(x̂(N)).
Under these assumptions, we construct a new control ũ ∈ U , to which a new trajectory x̃ ∈ X
corresponds and for which the quality of the control J(x̃(N)) satisfies the inequality

J(x̃(N)) < J(x̂(N)). (12)

If this can be done and J(x̃(N)) > 0, then we redesignate ũ by û and repeat the procedure. To
construct an improvement ũ for a given control û, we will use the method proposed by V.F. Krotov
and then developed in various directions in numerous works by his students and followers (see, for
example, [16, 18–21, 23, 30]).

In [16, 19, 21] it was noted that in the case of systems linear in state and linear terminal quality
functional, Krotov’s method demonstrates the highest rate of improvement. Moreover, in this
case the procedure of constructing improvements is significantly simplified, since it turns out to
be possible to apply the simplest, linear, implementation of the method. In order to use these
advantages, we will first consider the regularization transformation, which allows us to reduce the
problem (11) with respect to the system (1) and the initial condition (2) to an equivalent problem
with a functional linear in state.

For x ∈ R
n we introduce the notation X := xxT ∈ R

n×n. Then for any k we have

X(k + 1) := x(k + 1)x(k + 1)T = (Ax(k) + u(k))(Ax(k) + u(k))T

= AX(k)AT +Ax(k)u(k)T + u(k)x(k)TA(k)T + u(k)u(k)T (13)

and X(0) = x0x
T
0 . Let’s consider the problem

J (X(N)) = tr[X(N)] → min
u∈U

. (14)

It is clear that J (X(N)) = J (x(N)x(N)T) = J(x(N)), and problem (14) is equivalent to prob-
lem (11).

Let us recall the construction of classical necessary optimality conditions in the problem (14)
(see, for example, [31]). Let us compose the Hamilton–Pontryagin function

H(x,X,ψ,Ψ, u) = 〈ψ,Ax + u〉+ tr
[

Ψ
(

AXAT +AxuT + uxTAT + uuT
)]

and the system of dual equations

ψ(k) = ATψ(k + 1) + 2ATΨ(k + 1)u(k), ψ(N) = 0,

Ψ(k) = ATΨ(k + 1)A, Ψ(N) = −I,

where ψ ∈ R
n, Ψ ∈ R

n×n, I is the identity matrix of dimensions n× n. If the control û ∈ U is opti-
mal in problem (14), then the following relations of the discrete vector-matrix maximum principle
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1060 IBRAGIMOV, TSARKOV

are satisfied:

H(x̂(k), X̂(k), ψ̂(k + 1), Ψ̂(k + 1), û(k)) = max
v∈U

H(x̂(k), X̂(k), ψ̂(k + 1), Ψ̂(k + 1), v), (15)

x̂(k + 1) = Ax̂(k) + û(k), x̂(0) = x0, (16)

X̂(k + 1) = AX̂(k)AT +Ax̂(k)û(k)T + û(k)x̂(k)TAT + û(k)û(k)T, X̂(0) = x0x
T
0 , (17)

ψ̂(k) = ATψ̂(k + 1) + 2ATΨ̂(k + 1)û(k), ψ̂(N) = 0, (18)

Ψ̂(k) = ATΨ̂(k + 1)A, Ψ̂(N) = −I, (19)

where k takes all possible values from the set {0, 1, . . . , N − 1}.
In the relations (15)–(19) the matrices X̂(k) and Ψ̂(k) have the role of auxiliary regularization

variables and can be removed from consideration in the future. Indeed, due to (19) we have

Ψ̂(k) = −(AT)N−kAN−k = −(AN−k)TAN−k,

and for any k the following equality holds:

H(x̂(k), X̂(k), ψ̂(k + 1), Ψ̂(k + 1), v)

= 〈ψ̂(k + 1), Ax̂(k) + v〉+ tr[Ψ̂(k + 1)(AX̂(k)AT +Ax̂(k)vT + vx̂(k)TAT + vvT)]

= 〈ψ̂(k + 1) + 2Ψ̂(k + 1)Ax̂(k), v〉 + 〈v, Ψ̂(k + 1)v〉 + Ĥ0(k)

= 〈ψ̂(k + 1)− 2(AN−k−1)TAN−kx̂(k), v〉 − 〈v, (AN−k−1)TAN−k−1v〉+ Ĥ0(k),

where Ĥ0(k) = 〈ψ̂(k + 1), Ax̂(k)〉 + tr[Ψ̂(k + 1)AX̂(k)AT] does not depend on v.

Therefore, the system of relations of the discrete maximum principle (15)–(19) is equivalent to
the system

〈ψ̂(k + 1)− 2(AN−k−1)TAN−kx̂(k), û(k)〉 − 〈û(k), (AN−k−1)TAN−k−1û(k)〉

= max
v∈U

(

〈ψ̂(k + 1)− 2(AN−k−1)TAN−kx̂(k), v〉 − 〈v, (AN−k−1)TAN−k−1v〉
)

, (20)

x̂(k + 1) = Ax̂(k) + û(k), x̂(0) = x0, (21)

ψ̂(k) = ATψ̂(k + 1)− 2(AN−k)TAN−k−1û(k), ψ̂(N) = 0. (22)

It is important to note that this regularized system is not computationally equivalent to the
degenerate system of relations of the discrete maximum principle for the problem (11) and the-
oretically allows to find optimal controls in the original problem. However, as has already been
said, determining the optimal control directly from the conditions (20)–(22) is associated with se-
rious computational difficulties. Therefore, in accordance with the above approach, we will seek
improvements ũ ∈ U of the given (non-optimal) control û ∈ U in the sense of the inequality (12)
using the obtained regular constructions.

5. KROTOV METHOD

Let û ∈ U be an arbitrary control, x̂ ∈ X satisfies the equation (21), and ψ̂ ∈ X ′ satisfies the dual
equation (22). Here X ′ := {k 7→ ψ(k) : {0, 1, . . . , N} → R

n | ψ(N) = 0}. Consider the function
ϕ̂ : {0, . . . , N} × R

n → R of the form

ϕ̂(k, x) = 〈ψ̂(k), x〉 − ‖AN−kx‖2.
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For k ∈ {0, . . . , N −1} and x, u ∈ R
n we introduce the following notations, consistent with [15, 16]:

R̂(k, x, u) = ϕ̂(k + 1, Ax+ u)− ϕ̂(k, x),

Ĝ(x) = ϕ̂(N,x)− ϕ̂(0, x0) + J(x).

Here the choice of notations ϕ̂, R̂, Ĝ is related to the fact that these functions are determined by
the element ψ̂ ∈ X ′, i.e., ultimately, by an arbitrarily chosen control û ∈ U . It is clear that by
construction for any values of k, x and u we have

R̂(k, x, u) = H(x, xxT, ψ̂(k + 1),−(AN−k−1)TAN−k−1, u)− ϕ̂(k, x),

Ĝ(x) ≡ −〈ψ̂(0), x0〉+ ‖ANx0‖2.

The following result is the main statement on the improvement. Improvement theorems were
first formulated by V.F. Krotov (see, for example, [16, Theorem 1]).

Theorem 2. Let û ∈ U , x̂ ∈ X , ψ̂ ∈ X ′ satisfy the relations (21) and (22). Let ũ ∈ U satisfy the

condition

R̂(k, x̃(k), ũ(k)) = max
v∈U

R̂(k, x̃(k), v) ∀k ∈ {0, . . . , N − 1}, (23)

where x̃(0) = x0 and for k = 0, . . . , N − 1

x̃(k + 1) = Ax̃(k) + ũ(k). (24)

Then there is a non-strict improvement in the problem (12), i.e.

J(x̃(N)) 6 J(x̂(N)).

Remark 2. Let û and x̂ be taken from Theorem 2. Then the pair (x̂, û) satisfies the relations of
the discrete maximum principle (20)–(22) if and only if for ũ = û the condition (23) is satisfied for
x̃ = x̂, i.e.

R̂(k, x̂(k), û(k)) = max
v∈U

R̂(k, x̂(k), v), k = 0, . . . , N − 1.

Remark 3. The condition (23) is equivalent to the condition

ũ(k) ∈ Argmax
v∈U

(

〈ψ̂(k + 1)− 2(AN−k−1)TAN−kx̃(k), v〉 − ‖AN−k−1v‖2
)

.

As an elementary corollary, we note how the result of Theorem 2 is related to solutions of
extremal problems (11) and (14).

Corollary 2. Let û ∈ U be an optimal control in problems (11) and (14), and let x̂ ∈ X and

ψ̂ ∈ X ′ satisfy the relations (21), (22). Then for any ũ ∈ U satisfying the condition (23), the

equality J(x̃(N)) = J(x̂(N)) holds.

The statement of Theorem 2 about the fulfillment of non-strict inequality J(x̃(N)) 6 J(x̂(N))
remains valid even if the condition detA 6= 0 in the original problem is not satisfied. But for systems
of the form (1) with a non-singular matrix A, it is possible to establish a closer connection between
unimprovability in the sense of the inequality (12) in Theorem 2 and extremals in (14).

Theorem 3. Let A be a non-singular matrix in the system (1), û and x̂ be taken from Theo-

rem 2. Then there exists a unique pair (x̃, ũ) satisfying conditions (23) and (24), and the equality

J(x̃(N)) = J(x̂(N)) holds if and only if the pair (x̂, û) satisfies the relations of the discrete maxi-

mum principle (20)–(22).
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Thus, within the considered problem, it is possible to guarantee the fulfillment of the strict
inequality (12) when choosing a new control ũ from the condition (23) if and only if the given
control û is not extremal in the problem (14). Directly from this we have the possibility of making
an iterative algorithm for approximate construction of an optimal control in the original time-
optimization problem.

Let the control û ∈ U be given. Now we construct a sequence of controls u(l) ∈ U in the following
way. Let u(0) = û. Let for some l > 0 the control u(l) have already been constructed. Then for
each k ∈ {0, . . . , N − 1} we take as u(l+1)(k) the solution to the optimization problem

〈ψ(l)(k + 1)− 2(AN−k−1)TAN−kx(l+1)(k), v〉 − ‖AN−k−1v‖2 → max
v∈U

,

where ψ(l)(N) = 0, x(l+1)(0) = x0 and for k = 0, . . . , N − 1

ψ(l)(k) = ATψ(l)(k + 1)− 2(AN−k)TAN−k−1u(l)(k),

x(l+1)(k + 1) = Ax(l+1)(k) + u(l+1)(k).

From Theorem 3 and Remark 3, taking into account the compactness of the set U and the
unique solvability of the last equation, we obtain

Corollary 3. Let the matrix A be non-singular. Then for any initial approximation û ∈ U the

sequence of control processes (x(l), u(l)) constructed above has a subsequence converging in R
2nN+n,

and any process (x̃, ũ) that is a partial limit of the sequence {(x(l), u(l))} satisfies the relations of

the discrete maximum principle (20)–(22).

6. ALGORITHMIC IMPLEMENTATION

In accordance with the obtained results, we have the following algorithm for constructing an
approximate solution to the time-optimization problem for the system (1)–(2).

0. Calculate a two-sided estimate of the optimal time Nmin 6 Nmin 6 Nmin. In the case when
the matrix A has n linearly independent eigenvectors, the desired estimate can be found by
Theorem 1 taking into account Remark 1. Put N = Nmin. Specify the values of admissible
calculation errors ε1, ε2 > 0.

1. Let u(0) = 0, l = 0, A(k) = AN−k, k = 0, . . . , N .
2. Find the solution x(l) to the system of equations

x(k + 1) = Ax(k) + u(l)(k), k = 0, . . . , N − 1, x(0) = x0.

3. Find the solution ψ(l) to the system of equations

ψ(k) = ATψ(k + 1)− 2A(k)TA(k + 1)u(l)(k), k = 0, . . . , N − 1, ψ(N) = 0.

4. Find sequentially for each k ∈ {0, . . . , N−1} a solution u(l+1)(k) to the optimization problem

〈ψ(l)(k + 1)− 2A(k + 1)TA(k)x(l+1)(k), v〉 − ‖A(k + 1)v‖2 → max
v∈U

,

where the values of x(l+1)(k) are calculated by formulas

x(l+1)(k + 1) = Ax(l+1)(k) + u(l+1)(k), k = 0, . . . , N − 1, x(l+1)(0) = x0.

5. Check internal stop condition

‖x(l+1)(N)‖ − ‖x(l)(N)‖ < ε1,

if it is fulfilled, put ũ = u(l+1) and go to step 7.
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6. Increase l by 1 and go to step 3.

7. Check external stop condition

‖x̃(N)‖ = ‖x(l+1)(N)‖ < ε2,

if it is fulfilled, putNmin = N and finish the calculations, otherwise, if the inequality N < Nmin

holds, then increase N by 1 and go to step 1. If N = Nmin, then finish the calculations by
putting Nmin = Nmin.

Since the matrix A in the system (1) is non-singular, the algorithm allows for each N =
Nmin, . . . , Nmin to approximately find the control that generates a process for which the relations
of the discrete maximum principle (20)–(22) are satisfied.

The value of Nmin, found at the end of the algorithm execution, has the meaning of an upper
bound for the optimal time for the system (1)–(2), and the control ũ should be considered only
as a guarantee. However, if in the problem (14) the discrete maximum principle is a necessary
and sufficient condition for optimality, then, with an accuracy of up to the ε2-error of calculations,
Nmin coincides with the optimal time (i.e., for a sufficiently small ε2 it cannot differ from the
optimal time by more than 1), and ũ generates a process in the system (1)–(2) that is optimal in
terms of optimal time. In the case Nmin = Nmin, the value Nmin is obviously the optimal time,
while ũ is the optimal control in terms of time-optimization problem.

Steps 1–6 of the algorithm replace a numerical method for solving the problem of minimizing
the functional J with respect to the set of variables u(0), . . . , u(N − 1) for a given value of N .
Instead of solving one problem with a quadratic functional of the form (11) of dimension nN on
the set UN , it is proposed to sequentially solve N problems of dimension n on the set U with
the quadratic functional written down in step 4 several times. Computational practice shows that
the second approach is more effective in cases where the value of N is sufficiently large. The
complexity of solving the problem in step 4 depends on the structure of the set U . For example,
if U is a polyhedron, then the corresponding optimization problem can be solved by the ellipsoid
method with polynomial time complexity [32]. We also note that the values of N are quite large if
the studied problem was obtained by highly accurate discretization of a continuous-time problem.

7. EXAMPLES

To illustrate the results in this section, we will restrict ourselves to the case n = 2 as the most
convenient for depicting the trajectories of the controlled process in phase space and at the same
time sufficiently meaningful in terms of the diversity of problem statements and the traits of their
solutions. We will begin with one academic example that allows almost analytical study.

Example 1. Let’s consider a system of the form (1)–(2)

x(k + 1) = Ax(k) + u(k), x(0) = x0 ∈ R
2,

where

A =

(

1 0
0 γ

)

, x0 =

(

√

r2 − γ2 + r
γ−1

)

, γ ∈ (0; r), r > 0.

The set U ⊂ R
2, defining the geometric constraints, has the form

U = {(u1, u2) | u21 + u22 6 r2}.

We need to solve the time-optimization problem for this system.
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It is clear that Nmin > 2, since the point

Ax0 =

(

√

r2 − γ2 + r
1

)

is located at the distance from origin greater than r, which means that it is impossible to transfer
the system to the origin in one step.

At the same time, for any γ we can set u∗(0) = (−r, 0)T and obtain

x∗(1) = Ax0 + u∗(0) =

(

√

r2 − γ2

1

)

, Ax∗(1) =

(

√

r2 − γ2

γ

)

,

where the point Ax∗(1) is at a distance r from zero, so that there is u∗(1) for which x∗(2) =
Ax∗(1) + u∗(1) = 0. Consequently, in this problem Nmin = 2 and the process {x∗(k), u∗(k− 1)}2k=0

is optimal.

Let us try the algorithm from Section 6 on this example. At the zero step, we define a two-
sided estimate Nmin 6 Nmin 6 Nmin. Since the matrix A is diagonal and non-singular, then to
construct the desired estimate according to Theorem 1 it is sufficient to calculate the values of the
four parameters u′1,max, u

′
2,max, u

′′
1,max, u

′′
2,max so that the double inclusion is satisfied

[−u′1,max;u
′
1,max]× [−u′2,max;u

′
2,max] ⊂ U ⊂ [−u′′1,max;u

′′
1,max]× [−u′′2,max;u

′′
2,max].

To perform the first of them, we set

u′1,max = u′2,max = r/
√
2,

and the best values of u′′i,max, taking into account the Remark 1, are determined from the solution
of the problem (7):

u′′1,max = u′′2,max = r.

Moreover, due to Theorem 1 we have

⌈

max
i=1,2

F (x0,i; r, λi)

⌉

6 Nmin 6

⌈

max
i=1,2

F (x0,i; r/
√
2, λi)

⌉

,

where x0,1 =
√

r2 − γ2 + r, x0,2 = γ−1, λ1 = 1, λ2 = γ, and the function F is defined by the for-
mula (6). In particular, for any values of r > 0 and γ ∈ (0; r)

Nmin > ⌈F (x0,1; r, λ1)⌉ =
⌈
√

r2 − γ2 + r

r

⌉

= 2.

For definiteness, if r = 0.5, γ = 0.1, then from the upper bound we find

Nmin 6 ⌈2.8⌉ = 3.

Let N = 2, u(0)(k) ≡ 0. At step 2 of the algorithm we see that the zero control is not optimal:

x(0)(1) =

(

√

r2 − γ2 + r
1

)

, x(0)(2) =

(

√

r2 − γ2 + r
γ

)

⇒ ‖x(0)(2)‖ > 0.

At step 3, we fix ψ(0)(k) ≡ 0 and go to step 4.
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Fig. 1. The first iteration of the algorithm in Example 1.

At step 4, we need to solve two optimization problems sequentially for k = 0 and for k = 1. In
particular, for k = 0 we have the problem

u21 + γ2u22 + 2
√

r2 − γ2u1 + 2γ2u2 → min
u2
1
+u2

2
6r2

.

For r = 0.5, γ = 0.1 from its solution we obtain (see Fig. 1)

u(1)(0) ≈ (−0.4999,−0.01)T ⇒ x(1)(1) ≈ (0.49, 0.99)T .

For the same values of r and γ for k = 1 we find

u(1)(1) ≈ (−0.49,−0.1)T ⇒ x(1)(2) ≈ 0.

Thus, already at the first iteration of the algorithm, a guaranteeing control in the time-opti-
mization problem for the given system is approximately constructed. Since N = 2 coincides with
the lower bound of the optimal time, we can conclude that this guaranteeing control is optimal and
Nmin = 2.

Let us make sure that the second iteration does not lead to a worsening of the result. At the
second iteration, as the initial control we have the control just constructed u(1). At step 3 we find
(r = 0.5, γ = 0.1)

ψ(1)(2) = 0, ψ(1)(1) ≈ (1, 0.02)T.

At step 4 we obtain

u(2)(0) ≈ (−0.4992,−0.028)T ⇒ x(2)(1) ≈ (0.491, 0.972)T ,

u(2)(1) ≈ (−0.4905,−0.97)T ⇒ x(2)(2) ≈ 0.

It is interesting to note the peculiarities of the geometry of the constructions carried out.
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Fig. 2. Search for points closest to origin in Example 1.

To do this, we first assume that the control in the system is constructed so that at each step
the closest point to origin from the reachable set is obtained. Since

x(1) =

(

√

r2 − γ2 + r
1

)

+ u(0),

the corresponding control u∗(0) is the solution to the problem

‖x(1)‖2 =

(

√

r2 − γ2 + r + u1

)2

+ (1 + u2)
2 → min

u2
1
+u2

2
6r2

,

in particular, for r = 0.6, γ = 0.1 we have

u∗(0) ≈ (−0.352,−0.355)T ⇒ x∗(1) ≈ (0.639, 0.645)T .

But then (see Fig. 2)

Ax(1) ≈
(

0.639
0.064

)

,

but this point is located at a distance greater than 0.6 > r from origin. Therefore, no control u∗(1)
will allow the system to be transferred to origin at the second step.

Note now that the first iteration of the algorithm from Section 6 also implements the search for
the closest points from the reachable sets, but not in the sense of the Euclidean metric (see Figs. 1
and 2), but in the sense of distances generated by the norms

‖x‖2A,N,k = ‖AN−k−1x‖2.

In particular, for k = N − 1 the norm ‖ · ‖A,N,k coincides with the Euclidean norm for any N
and A, detA 6= 0. The second iteration minimizes this distance not to zero, but to some other
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point determined by the vector of dual variables ψ(k). This fact allows us to correct the structure
of optimal control in the case when the first iteration failed to calculate the answer accurately
enough. As will be seen below, such a situation can arise if the set U has a sufficiently complex
structure, and the point x0 lies on the boundary of the null-controllable set Ξ(Nmin).

Example 2. Let us consider a system of the form (1)–(2), where

A =
4

5

(

cos(1) + sin(1) −2 sin(1)
sin(1) cos(1) − sin(1)

)

, x0 =

(

−37.8
−26.1

)

.

Geometric constraints are defined by a set

U = {u | 〈u,Hu〉 6 1}, H =

(

2 1
1 3

)

.

Consider the time-optimization problem.

Let us construct an estimate Nmin 6 Nmin 6 Nmin. The matrix A has a pair of complex eigen-
values, which are equal in absolute value to r1 = 4/5. The transition matrix to the real Jordan
basis has the form

S =

(

1 1
1 0

)

.

Thus, the considered system satisfies the conditions of Theorem 1 for the case n1 = 0, n2 = 1. The
radii of the inscribed U and circumscribed U balls for the ellipse S−1U are determined uniquely
and can be found numerically:

U = BR′

1,max
, R′

1,max = 0.3449, U = BR′′

1,max
, R′′

1,max = 1.2965.

Using the values R′
1,max, R

′′
1,max in Theorem 1, we obtain that

8 6 Nmin 6 13.

We apply the algorithm from the Section 6, performing the corresponding calculations numer-
ically. We fix the found two-sided estimate 8 6 Nmin 6 13 and set ε1 = 10−4, ε2 = 10−16. With
these error values for N = 8 and N = 9, the internal stopping condition is satisfied at the 33th
and 9th iterations, respectively, but the external stopping condition is satisfied only for N = 10.
For N = 10, the internal stopping condition is satisfied already at the first iteration. In this case,
the control process {x(1)(k), u(1)(k−1)}10k=0 shown in Fig. 3 is found (in this and subsequent Figs. 4,
6–8 and 10, the trajectory of the process in the phase space is shown on the left, and the values
of the controls against the background of a set of geometric constraints U are shown on the right).
For this process, it holds that ‖x(1)(N)‖ < ε2. For comparison, for N = 8, ‖x(33)(N)‖ ≈ 0.5 was
found, and for N = 9, ‖x(9)(N)‖ ≈ 0.2 was found. Note that calculations up to the internal stop for
N = 11, 12, 13 in one iteration lead to constructing processes for which the external stop condition
‖x(1)(N)‖ < ε2 holds, and in this case u(1)(10) ≈ . . . ≈ u(1)(N) ≈ 0.

The formal result of applying the algorithm from Section 6 is the following: with an accuracy
of up to ε2-error of calculations, the upper bound of the optimal time Nmin can be reduced from
Nmin = 13 to Nmin = 10, while the guaranteeing control and the corresponding trajectory have the
form, shown in Fig. 3.

To evaluate the quality of the obtained results, we can use numerical procedures of condi-
tional minimization for direct solution of smooth finite-dimensional problems ‖x(9)‖2 → min and
‖x(10)‖2 → min in the presence of a finite number of smooth inequality-type constraints on the
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Fig. 3. Guaranteeing (optimal) process in Example 2.

variables u(k). Since the dimensions of the corresponding problems are not too large, they can be
solved quite accurately. In the first case, the minimum value is approximately equal to 0.041 ≈ 0.22,
in the second case it is equal to zero. Consequently, Nmin = 10 and the guaranteeing process shown
in Fig. 3 is optimal.

Example 3. Let us consider a system of the form (1)–(2), where

A =

(

31/20 −3/20
1/10 6/5

)

, x0 =

(

5.08
6.28

)

.

Geometric constraints are defined by a set

U =

{

(u1, u2)

∣

∣

∣

∣

∣

42/3|u1 −
√
3u2|4/3

16
+

62/3|
√
3u1 + u2|4/3
36

6 1

}

.

Consider the time-optimization problem.

Let us construct an estimate Nmin 6 Nmin 6 Nmin. The matrix A has a pair of real eigenvalues
λ1 = 3/2, λ2 = 5/4. The transition matrix to the real Jordan basis has the form

S =

(

3 1/2
1 1

)

.

The considered system satisfies the conditions of Theorem 1 for the case n1 = 2, n2 = 0. The
parameters of the inscribed U and circumscribed U rectangles for the set S−1U are determined
numerically:

U = [−u′1,max;u
′
1,max]× [−u′2,max;u

′
2,max], u′1,max = 0.3883, u′2,max = 1.4057,

U = [−u′′1,max;u
′′
1,max]× [−u′′2,max;u

′′
2,max], u′′1,max = 0.8834, u′′2,max = 2.4839.

Using Theorem 1, we obtain the estimate

3 6 Nmin 6 17.
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Fig. 4. Process (x(1), u(1)) in Example 3 for N = 11.

0
0 20

1

2

3

40 60 80

4

5
||x(l)(N)||

l100

Fig. 5. Convergence of inner iterations in Example 3 for N = 11.

Let us numerically apply the algorithm from Section 6 for ε1 = 10−4 and ε2 = 0.001. The
external stopping condition is first satisfied for N = 11. Let us describe the process of executing
internal iterations for N = 11 in more detail. At the first internal iteration, we find the control
process {x(1)(k), u(1)(k − 1)}11k=0, shown in Fig. 4. For this process ‖x(1)(N)‖ ≈ 5.37. The use of
repeated iterations (l = 1, 2, . . .) leads to a decrease in the value of ‖x(l+1)(N)‖. The graph of
the dependence of ‖x(l)(N)‖ on l is shown in Fig. 5. The control process (x(116), u(116)) is shown
in Fig. 6.

The low accuracy of the two-sided estimate and the slow convergence of the algorithm in this
example are due to the fact that the system under consideration is not stable, and the initial
condition lies near the boundary of the reachable set. Nevertheless, based on the results of the
algorithm’s operation, a new upper bound for the optimal time was obtained with the ε2-error:
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Fig. 6. Guarantee process in Example 3.

Nmin = 11, and a guaranteeing control corresponding to this value was constructed. However, this
bound does not coincide with the optimal time, since the minimum value of the objective functional
in the finite-dimensional problem ‖x(10)‖2 → min is equal to zero, and in reality Nmin = 10.

Example 4. Let us consider a system of the form (1)–(2), where

A =

( √
2/2 −

√
2/2√

2/2
√
2/2

)

, x0 =

(

9.33
0.2

)

.

In this example, we consider geometric constraints of mixed type defined by the set

U =

[

−
√
3

2
;

√
3

2

]2

∩ B1,

where B1 is the unit ball with center at origin. Let us solve the time-optimization problem under
these conditions.

Let us construct an estimate Nmin 6 Nmin 6 Nmin. The matrix A has a pair of complex conjugate
eigenvalues equal in absolute value to r1 = 1. At the same time, it is already in its real Jordan form,
and therefore S = I. Thus, the system under consideration satisfies the conditions of Theorem 1 for
the case n1 = 0, n2 = 1. The radii of the inscribed U and circumscribed U balls for the set S−1U
are uniquely determined and can be found numerically:

U = BR′

1,max
, R′

1,max =
√
3/2, U = BR′′

1,max
, R′′

1,max = 1.

Using Theorem 1, we obtain the estimate

10 6 Nmin 6 11.

We apply the algorithm from Section 6 for ε1 = ε2 = 10−4. For N = 10, at the first internal
iteration we find the control process {x(1)(k), u(1)(k − 1)}10k=0, shown in Fig. 7, for which the
condition ‖x(1)(N)‖ < ε2 holds.

Since N = 10 is the lower bound on the optimal time, the process, shown in Fig. 7, is optimal
to within ε2-calculation error.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024



ON AN APPROACH TO SOLVING THE TIME-OPTIMIZATION PROBLEM 1071

Fig. 7. Optimal process in Example 4.

Fig. 8. The process (x(1), u(1)) in Example 5.

Example 5. Let us consider a system of the form (1)–(2), where

A =

(

33/20 −1/5
4/5 17/20

)

, x0 =

(

4.31
21.85

)

.

The geometric constraints are defined by the same set as in Example 3. Let us consider the
time-optimization problem for this example.

The trait of this example is that the matrix A does not have two linearly independent eigen-
vectors. Therefore, Theorem 1 cannot be used here to construct estimates of the optimal time.
However, it is possible to use the means for determining the optimal time developed in [22]. Due
to [22], the exact equality Nmin = 10 holds.

We apply the algorithm from the Section 6, considering the two-sided estimate of the optimal
time Nmin to be given in the form 10 6 Nmin 6 10 and setting ε1 = 10−4, ε2 = 0.01. At the first
internal iteration, we find the control process {x(1)(k), u(1)(k − 1)}10k=0, shown in Fig. 8. As in
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Fig. 9. Convergence of iterations to the optimal solution in Example 5.

Fig. 10. Approximation to the optimal process in Example 5.

Example 3, this process is far from optimal, since ‖x(1)(N)‖ ≈ 9.73. Therefore, the use of repeated
iterations is relevant, which leads to the results shown in Figs. 9 and 10.

Since the optimal time is known exactly, the obtained result is a ε2-approximation to the optimal
solution to the problem.

8. CONCLUSION

The paper constructs an algorithm for solving the time-optimization problem for linear discrete-
time systems with a non-singular matrix. The algorithm allows us to refine known upper estimates
for the optimal time and find control processes that guarantee the corresponding estimates. When
some additional assumptions are fulfilled, the result of the algorithm is the construction of an
optimal solution to the time-optimization problem.
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The proposed algorithm belongs to the class of methods for solving finite-dimensional optimiza-
tion problems with constraints based on the dimensionality reduction procedure. Since the average
dimensionality reduction coefficient in the considered problem is determined by the optimal time,
the efficiency of the algorithm increases with its increase.

In the future, we are planning to extend the obtained results to the case of systems with a
singular matrix, and also to use the proposed approach for direct calculation of the optimal time,
and not only its upper bound. It is also relevant to obtain new meaningful statements about
convergence and determine the convergence rate of the algorithm in the general case.
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APPENDIX

Lemma 5. Let V1, V
′
1 ⊂ R

n1, V2, V
′
2 ⊂ R

n2. Then

V1 × V2 + V ′
1 × V ′

2 = (V1 + V ′
1)× (V2 + V ′

2).

Proof. The inclusion y ∈ V1 × V2 + V ′
1 × V ′

2 by the definition of the Minkowski sum and the
Cartesian product is valid if and only if there exist v1 ∈ V1, v2 ∈ V2, v

′
1 ∈ V ′

1 , v
′
2 ∈ V ′

2 such that

y = (v1, v2) + (v′1, v
′
2) = (v1 + v′1, v2 + v′2).

But the last condition is equivalent to the inclusion y ∈ (V1 + V ′
1)× (V2 + V ′

2). Lemma 5 is proved.

Proof of Lemma 2. According to the assumptions detA 6= 0 and for any k ∈ N the following
relations hold:

A−k =

























λ−k
1 . . . 0

. . .

λ−k
n1

... r−k
1 A−kϕ1

...
. . .

0 . . . r−k
n2
A−kϕn2

























,

A−kU =
n1
⊗

i=1

[

−|λi|−kui,max; |λi|−kui,max

]

×
n2
⊗

j=1

r−k
j BRj,max

.

Therefore, from the definition of (4) and Lemmas 1, 5 for an arbitrary N ∈ N follows the represen-
tation

Ξ(N) =
n1
⊗

i=1

[

−
N
∑

k=1

|λi|−kui,max;
N
∑

k=1

|λi|−kui,max

]

×
n2
⊗

j=1

N
∑

k=1

r−k
j BRj,max

. (A.1)
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Hence, the inclusion x0 ∈ Ξ(N) is equivalent to the fact that for all i = 1, n1 and j = 1, n2 the
following relations are satisfied:

|x0,i| 6
N
∑

k=1

|λi|−kui,max =











Nui,max, |λi| = 1,

ui,max
1− |λi|−N

|λi| − 1
, |λi| 6= 1,

(A.2)

√

x20,n1+2j−1 + x20,n1+2j 6

N
∑

k=1

r−k
j Rj,max =















NRj,max, rj = 1,

Rj,max

1− r−N
j

rj − 1
, rj 6= 1.

(A.3)

The condition (A.2) is equivalent to the inequality

N >























|x0,i|
ui,max

, |λi| = 1,

−
ln
(

1− |x0,i|
ui,max

(|λi| − 1)
)

ln |λi|
, |λi| 6= 1,

= F (x0,i;ui,max, λi).

The condition (A.3) is equivalent to the inequality

N >











































√

x20,n1+2j−1 + x20,n1+2j

Rj,max
, rj = 1,

−
ln



1−

√

x2
0,n1+2j−1

+x2
0,n1+2j

Rj,max
(rj − 1)





ln rj
, rj 6= 1,

= F
(√

x20,n1+2j−1 + x20,n1+2j ;Rj,max, rj
)

.

The resulting expressions are correct, since the following condition is valid:
(

1− |x0,i|
ui,max

(|λi| − 1)

)

> 0, i = 1, n1,



1−

√

x20,n1+2j−1 + x20,n1+2j

Rj,max
(rj − 1)



 > 0, j = 1, n2.

Indeed, for |λi| 6 1 and rj 6 1 these relations are satisfied automatically. If |λi| > 1 or rj > 1,
then they can be obtained by passing in (A.1) to the limit with respect to N → ∞ and using the
assumption Nmin <∞, due to which it holds that x0 ∈ ∪∞

N=0Ξ(N) (see the detailed justification
in [27]).

Hence, conditions (A.2) and (A.3) are satisfied exactly when

N > max

{

max
i=1,n1

F (x0,i;ui,max, λi); max
j=1,n2

F
(√

x20,n1+2j−1 + x20,n1+2j ;Rj,max, rj
)

}

,

and thus Lemma 2 is proved.

Proof of Lemma 3. It follows from (4) that for any N ∈ N ∪ {0} the inclusion

Ξ(N) ⊂ Ξ(N) ⊂ Ξ(N)
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holds, where Ξ(N),Ξ(N),Ξ(N) are the null-controllable sets in N steps of the systems (A,U ),
(A,U), (A,U ), respectively. Therefore, the inequality Nmin6Nmin6Nmin follows directly from (5).
Lemma 3 is proved.

Proof of Theorem 1. Let us denote by {Ξ̃(N)}∞N=0 the class of null-controllable sets of the
system (Λ, S−1U). According to Lemma 4 the following representation holds:

Ξ(N) = SΞ̃(N).

Hence, the inclusion x0 ∈ Ξ(N) holds if and only if y0 = S−1x0 ∈ Ξ̃(N) holds. Thus, taking into
account (5), the value of the optimal time for systems (A,U) and (Λ, S−1U) coincides for the initial
states x0 and y0, respectively.

Let

U =
n1
⊗

i=1

[−u′i,max;u
′
i,max]×

n2
⊗

j=1

BR′

j,max
, U =

n1
⊗

i=1

[−u′′i,max;u
′′
i,max]×

n2
⊗

j=1

BR′′

j,max
.

Since 0 ∈ intU , and the set U is bounded, the same holds for the set S−1U . Consequently, there
are values u′i,max, u

′′
i,max, R

′
j,max, R

′′
j,max > 0 for which U ⊂ S−1U ⊂ U holds.

Further, due to Corollary 1 the value of the optimal time Nmin for the system (Λ, U ) and the
initial state y0 has the form

Nmin =

⌈

max

{

max
i=1,n1

F (y0,i;u
′
i,max, λi); max

j=1,n2

F
(√

y20,n1+2j−1 + y20,n1+2j ;R
′
j,max, rj

)

}⌉

.

Similarly, the value of the optimal time Nmin for the system (Λ, U) and the initial state y0 has the
form

Nmin =

⌈

max

{

max
i=1,n1

F (y0,i;u
′′
i,max, λi); max

j=1,n2

F
(√

y20,n1+2j−1 + y20,n1+2j ;R
′′
j,max, rj

)

}⌉

.

To complete the proof, it remains to apply Lemma 3.

Lemma 6. Let û ∈ U , x̂ ∈ X be the solution to (21), ψ̂ ∈ X ′ is the solution to (22). Then

R̂(k, x̂(k), û(k)) = min
x∈Rn

R̂(k, x, û(k)) ∀k ∈ {0, . . . , N − 1}, (A.4)

Ĝ(x̂(N)) = max
x∈Rn

Ĝ(x). (A.5)

Proof. The equality (A.5) is obviously satisfied, since

Ĝ(x) ≡ −〈ψ̂(0), x0〉+ ‖ANx0‖2.

Due to (22) for all k ∈ {0, . . . , N − 1} we have

R̂(k, x, û(k)) = 〈ψ̂(k + 1), Ax + û(k)〉 − ‖AN−k−1(Ax+ û(k))‖2

− 〈ψ̂(k), x〉 + ‖AN−kx‖2 = 〈ψ̂(k + 1), û(k)〉 − ‖AN−k−1û(k)‖2,

therefore (A.4) also holds. Lemma 6 is proved.
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Proof of Theorem 2. Let all the conditions listed in Theorem 2 be satisfied. Based on the
notations, introduced in Section 5, due to Lemma 6 we have

J(x̃(N)) = Ĝ(x̃(N))− ϕ̂(N, x̃(N)) + ϕ̂(0, x0)

= Ĝ(x̃(N))−
N−1
∑

k=0

(

ϕ̂(k + 1, x̃(k + 1))− ϕ̂(k, x̃(k))

)

= Ĝ(x̃(N))−
N−1
∑

k=0

R̂(k, x̃(k), ũ(k))

(23)

6 Ĝ(x̃(N)) −
N−1
∑

k=0

R̂(k, x̃(k), û(k))
(A.4)

6 Ĝ(x̃(N))−
N−1
∑

k=0

R̂(k, x̂(k), û(k))

(A.5)

6 Ĝ(x̂(N))−
N−1
∑

k=0

R̂(k, x̂(k), û(k)) = J(x̂(N)).

Theorem 2 is proved.

Proof of Theorem 3. Let us show that in the case of a non-singular matrix A there is a unique
pair (x̃, ũ) satisfying (23), (24). Since due to (24) x̃ is uniquely determined by ũ, it is suffices to show
that for any values of x̃(k) there is a unique ũ ∈ U satisfying the condition (23). Indeed, if this is so,
then ũ(0) ∈ U is uniquely determined for k = 0, by which x̃(1) is uniquely determined, then ũ(1),
etc. But ũ from the condition (23) is found for each k = 0, . . . , N by solving the optimization
problem

R̂(k, x̃(k), v) → max
v∈U

,

which, due to Remark 3, is equivalent to the problem

f(v) := 〈ψ̂(k + 1)− 2(AN−k−1)TAN−kx̃(k), v〉 − ‖AN−k−1v‖2 → max
v∈U

.

Now we show that the solution to this problem exists and is unique for any x̃(k) ∈ R
n. Since the

matrix of the quadratic form (AN−k−1)TAN−k−1 is positive definite for detA 6= 0, then the strict
global maximum of the function f : Rn → R in the absence of the constraint v ∈ U is achieved at
the point

v∗ =
1

2
Ak+1−N (Ak+1−N )Tψ̂(k + 1)−Ax̃(k).

There are two possible cases: v∗ ∈ U or v∗ /∈ U . In the first case, v∗ is the unique solution to the
considered optimization problem with constraints. In the second case, the conditional maximum is
attained at some other point v′ ∈ U , since the function f is continuous and the set U is compact.
Let α = f(v′) = maxv∈U f(v). Then the level set V = {v ∈ R

n | f(v) > α} is a nonempty strictly
convex compact set. Moreover, V ∩ U = {v′}. Indeed, by definition v′ ∈ V ∩ U , and if there were a
point v′′ ∈ V ∩ U , v′′ 6= v′, then the segment [v′, v′′] would be entirely contained in the set V ∩ U ,
since the sets V and U are convex. But the set V is strictly convex, therefore 1

2(v
′ + v′′) ∈ intV ,

i.e. f(v′/2 + v′′/2) > α, v′/2 + v′′/2 ∈ U , which contradicts the definition of the number α. Thus,
in the second case, v′ is the unique solution to the problem f(v) → maxv∈U .

Suppose that the pair (x̂, û) does not satisfy the relations of the discrete maximum princi-
ple (20)–(22). By Remark 2, this means that there is r ∈ {0, . . . , N − 1} such that

R̂(r, x̂(r), û(r)) < max
v∈U

R̂(r, x̂(r), v).

Let us take the smallest such r. Then, due to the unique definition of ũ ∈ U , we have

ũ(k) = û(k), k = 0, 1, . . . , r − 1,
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and, therefore, x̃(r) = x̂(r). Hence,

R̂(r, x̂(r), û(r)) < max
v∈U

R̂(r, x̂(r), v) = max
v∈U

R̂(r, x̃(r), v) = R̂(r, x̃(r), ũ(r)).

From here, returning to the proof of Theorem 2, we find that

N−1
∑

k=0

R̂(k, x̃(k), ũ(k)) =
r−1
∑

k=0

R̂(k, x̃(k), ũ(k)) + R̂(r, x̃(r), ũ(r))

+
N−1
∑

k=r+1

R̂(k, x̃(k), ũ(k)) >
N−1
∑

k=0

R̂(k, x̂(k), û(k))

and, therefore,

J(x̃(N)) < J(x̂(N)).

If the pair (x̂, û) satisfies the relations of the discrete maximum principle, then, due to the unique
solvability of conditions (23), (24), x̃ = x̂ and ũ = û. Therefore, J(x̃(N)) = J(x̂(N)). Theorem 3
is completely proved.
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